Appendix G Ecological Evaluation Toxicity Reference Values

CONTENTS

4-Chloroaniline
Acetone
Anitimony (Antimony Potassium Tartrate)
Arsenic
Benzo(a)pyrene
Beryllium
Cadmium
Chromium(III)
Chromium(VI)
Cobalt (cobalt chloride)
Cobalt
Copper
Di-2-ethylhexyl-phthalate (DEHP)
Di-n-butylphthalate
Fluoride
Lead
Lead (Trimethyllead)
Magnesium
Mercury (Organic) and Mercury (Inorganic)
Nickel
PCBs (Aroclor 1254)
Selenium (Sodium selenite)
Selenium 8 ⁴

Silver	89
Thallium	90
Vanadium (Vanadyl sulfate)	93
Vanadium (Ammonium metavanadate)	96
Xylene	97
Zinc (zinc sulfate)	99
Zinc	100
Zinc (zinc oxide)	102

Appendix G

Ecological Evaluation Toxicity Reference Values

Tables G-1 and G-2 below present summaries of the toxicity reference values used to estimate risks associated with ecological receptors (see Section 7). The data that follow the two summary tables include data used to develop TRVs for individual contaminants.

Table G-1. Summary of selected toxicity reference values (TRVs in mg/kg-day) for mammalian functional groups.

Chemical	TRV for M121	TRV for M122	TRV for M122A	TRV for M123	TRV for M210	TRV for M210A	TRV for M222	TRV for M322	TRV for M422	TRV for M422A
1,1-Dichloroethylene (Rat-NOAEL)	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	3.8	3.8
1,1,1 Trichloroethane (Mouse - NOAEL)	333	333	333	333	333	333	333	333	500	500
1,1,2,2-Tetrachloroethane (Mouse - FEL)	7.89	7.89	7.89	7.89	7.89	7.89	7.89	7.89	11.8	11.8
1,2,4-Trichlorobenzene (Rat – NOAEL)	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.83	0.83
2-Butanone (Rat - NOAEL)	295.2	295.2	295.2	295.2	295.2	295.2	295.2	295.2	442.8	442.8
2-Chlorotoluene (Rat - NOAEL)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	5.0	5.0
2-Methylnaphthalene ^f (Rat - Cancer)	f	f	f	ſ	f	f	ſ	f	f	f
2-Propanol (Mouse - NOAEL)	217	217	217	217	217	217	217	217	325	325
2,3,7,8-Tetrachlorodibenzodioxin (Rat – NOAEL)	3E-8	3E-8	3E-8	3E-8	3E-8	3E-8	3E-8	3E-8	5E-8	5E-8
2,4-Dichlorophenoxyacetic acid (Rat and Mouse - NOAEL)	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.25	0.25
2,4- Dimethylphenol (Mouse - NOAEL)	17	17	17	17	17	17	17	17	25	25
2,4-Dinitrotoluene (Dog – NOAEL)	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.05	0.10
4-Chloroaniline (Rat and Moose - LOAEL)	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.78	0.78
4-Methylphenol (p-Cresol) (Rat NOAEL)	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	13	13
4-Chloro-3-methylphenol (CMP) (Rat – NOAEL)	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	8.3	8.3
Acenaphthene (Mouse - NOAEL)	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	21.9	21.9
Acetone (Mouse and Rat - NOAEL)	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	13	13
Acetonitrile ^a (Rat - NOAEL)	a	a	a	a	a	a	a	a	a	a

Table G-1. (continued).

Chemical	TRV for M121	TRV for M122	TRV for M122A	TRV for M123	TRV for M210	TRV for M210A	TRV for M222	TRV for M322	TRV for M422	TRV for M422A
Acrylonitrile (Rat - NOAEL)	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.14	0.14
Aluminum (Bovine - NOAEL)	1.28	1.28	1.28	1.28	0.85	0.85	0.85	0.85	0.85	0.85
Aluminum chloride (Bovine - NOAEL)	4.82	4.82	4.82	4.82	3.21	3.21	3.21	3.21	3.21	3.21
Aluminum hydroxide (Rat – AEL)	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	18.5	18.5
Aluminum nitrate (Rat - LOAEL)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	7.5	7.5
Ammonia (Rat - LD ₅₀)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	2.2	2.2
Anthracene (Mouse - NOAEL)	41.7	41.7	41.7	41.7	41.7	41.7	41.7	41.7	62.5	62.5
Antimony (Mouse - NOAEL)	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.23	0.35	0.35
Arsenic (Dog - NOAEL)	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.16	0.32
Asbestos (Rat - LOAEL)	6578	6578	6588	6578	6578	6578	6578	6578	9867	9867
Barium (Rat - NEL)	47.5	47.5	47.5	47.5	47.5	47.5	47.5	47.5	71.2	71.2
Barium chloride (Rat - NOAEL)	5.81	5.81	5.81	5.81	5.81	5.81	5.81	5.81	8.71	8.71
Benzene (Mouse - LOAEL)	3.66	3.66	3.66	3.66	3.66	3.66	3.66	3.66	5.49	5.49
Benzine ^d (Mouse - LD ₅₀)	d	d	đ	đ	d	d	d	d	d	d
Benzo(a)anthracene Mouse - FEL)	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3	14	14
Benzo(a)pyrene (Mouse-Cancer)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03
Benzo(b)fluoranthene (BbF) (Mouse - LOAEL)	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03
Beryllium (Rat - NOAEL)	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.22	0.33	0.33
Bis(tri-n-butyltin)oxide (Mouse – LD ₅₀)	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	1.0	1.0
Boron (Dog - NOAEL)	1.46	1.46	1.46	1.46	1.46	1.46	1.46	1.46	2.19	4.37
Butyl alcohol (n-Butanol) Rat – NOAEL)	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8	31.3	31.3
Butylbenzylphthalate (BBP) Rat – NOAEL)	4.42	4.42	4.42	4.42	4.42	4.42	4.42	4.42	6.63	6.63
Cadmium (Rat - LOAEL)	8E-4	8E-4	8E-4	8E-4	8E-4	8E-4	8E-4	8E-4	1E-3	1E-3

Table G-1. (continued).

Chemical	TRV for M121	TRV for M122	TRV for M122A	TRV for M123	TRV for M210	TRV for M210A	TRV for M222	TRV for M322	TRV for M422	TRV for M422A
Carbon disulfide ^a (Rabbit and Rat – NOAEL)	a	a	a	a	а	a	a	a	a	a
Carbon Tetrachloride (Rat - NOAEL)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	5.0	5.0
Cerium chloride (Rat - FEL)	8.68	8.68	8.68	8.68	8.68	8.68	8.68	8.68	13.03	13.03
Chloride (Mouse - FEL)	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	4.41	4.41
Chloroform (Dog - NOAEL)	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.61	3.23
Chromium(III) (Rat – NOAEL)	250	250	250	250	250	250	250	250	375	375
Chromium(VI) (Dog – NOAEL)	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.08	0.15
Chryseneb (Mouse – LOAEL)	b	ь	b	b	Ъ	b	b	b	ь	b
Cobalt (Dog - NOAEL)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	2.1	4.2
Copper (Mink - NOAEL)	0.437	0.437	0.437	0.437	0.437	0.437	0.437	1.31	0.437	0.437
Cyanide (Rat - NOAEL)	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	2.70	2.70
Diethyl phthalate (Rat – NOAEL)	62.5	62.5	62.5	62.5	62.5	62.5	62.5	62.5	93.8	93.8
Di-2-ethylhexyl-phthalate (DEHP) (Guinea Pig – LOAEL)	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	1.2	1.2
Di-n-butylphthalate (Rat - NOAEL)	4.63	4.63	4.63	4.63	4.63	4.63	4.63	4.63	6.94	6.94
Di-n-octylphthalate (Rat - LOAEL)	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	21.8	21.8
Ethanol (Rat - LOAEL)	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	3.99	3.99
Ethylbenzene (Rat - LOAEL)	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	25.5	25.5
Fluoranthene (Mouse - NOAEL)	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	15.6	15.6
Fluorene (Mouse – LOAEL)	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	15.6	15.6
Fluoride (Mink – NOAEL)	10.5	10.5	10.5	10.5	10.5	10.5	10.5	31.4	10.5	10.5
Formaldehyde (Beagle Dog - NOAEL)	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	1.2	2.4
Hexachlorobenzene (Mink - NOAEL)	3	3	3	3	3	3	3	1	3	3

Table G-1. (continued).

Chemical	TRV for M121	TRV for M122	TRV for M122A	TRV for M123	TRV for M210	TRV for M210A	TRV for M222	TRV for M322	TRV for M422	TRV for M422A
Hydrazine (Mouse - NOAEL)	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	1.4	1.4
Hydrofluoric acid ^a (Mouse - FEL)	a	2	a	a	a	<u>a</u>	2	2	a	2
Lead (Rat - NOAEL)	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	4.0	4.0
Magnesium (Sheep - NOAEL)	2.2	2.2	2.2	2.2	1.4	1.4	1.4	1.4	1.4	1.4
Manganese (Rat - NOAEL)	29	29	29	29	29	29	29	29	44	44
Mercury (Inorganic) (Swine - NOAEL)	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.031	0.031
Mercury (Organic) (Rat- NOAEL)	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.0083	0.013	0.013
Methanol (Rat - NOAEL)	170	170	170	170	170	170	170	170	250	250
Methly isobutyl ketone (Rat - NOAEL)	21	21	21	21	21	21	21	21	31	31
Methylene chloride (Rat - NOAEL)	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	1.3	1.3
Molybdenum (Guinea pig - LOAEL)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	5.0	5.0
n-Propylbenzene ^g (Mouse - LOAEL)	g	g	g	g	g	g	g	g	g	g
Naphthalene (Mouse - NOAEL)	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.66	0.66
Nickel (Dog - NOAEL)	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	6.3	13
Nitrate (Rabbit - AEL)	83.21	83.21	83.21	83.21	55.47	55.47	55.47	55.47	55.47	55.47
Nitric acid (Rat - NOAEL)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	1.5
PCBs - Aroclor 1254 (Rat - NOAEL)	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.16	0.16
PCBs - Aroclor 1260 (Rat - NOAEL) ^e	c .	c	e	c	c	e	c	c	c	¢
Phenol (Rat - NOAEL)	13	13	13	13	13	13	13	13	20	20
Potassium chloride (Mouse - LD ₅₀)	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	9.3	9.3
Potassium hydroxide (Rat - LD ₅₀)	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.76	0.76

Table G-1. (continued).

Chemical	TRV for M121	TRV for M122	TRV for M122A	TRV for M123	TRV for M210	TRV for M210A	TRV for M222	TRV for M322	TRV for M422	TRV for M422A
Potassium nitrate (Rat - AEL)	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	1.1	1.1
Potassium phosphate (Rat – LD ₅₀)	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	8.6	8.6
Potassium sulfate (Rat - LD ₉₀)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	15.0	15.0
Pyrene (Mouse - NOAEL)	13	13	13	13	13	13	13	13	19	19
Selenium (Rat - NOAEL)	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.038	0.038
Silver (Mouse - FEL)	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.3	1.3
Sodium ^c (Mouse - LD ₅₀)	¢	С	c	c	c	c	c	С	c	¢
Sodium chloride (Rat - FEL)	2.88	2.88	2.88	2.88	2.88	2.88	2.88	2.88	4.33	4.33
Sodium cyanide (Rat - NOAEL)	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	5.1	5.1
Sodium hydroxide Rabbit - LD ₅₀)	3.1	3.1	3.1	3.1	2.1	2.1	2.1	2.1	2.1	2.1
Sodium nitrate (Rat - FEL)	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	1.2	1.2
Sodium phosphate (Mouse - LD ₅₀)	16.1	16.1	16.1	16.1	16.1	16.1	16.1	16.1	24.2	24.2
Strontium (Rat - NOAEL)	32	32	32	32	32	32	32	32	48	48
Sulfate (Rat - LD ₉₀)	5.32	5.32	5.32	5.32	5.32	5.32	5.32	5.32	7.98	7.98
Sulfuric acid ^a Guinea pig - LOAEL)	a	a	2	2	1	a	2	2	а	a
Гегрhenyl (Rat - LOAEL)	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	3.5	3.5
Tetrachloroethylene (Mouse - NOAEL)	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.8	1.8
Tetrahydrofuran h (Rat - NOAEL)	h	h	h	h	h	ħ	h	h	h	h
Гhallium (Rat - LOAEL)	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.06	0.06
Γin (Rat - NOAEL)	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.72	1.72
Foluene (Rat - NOAEL)	18.6	18.6	18.6	18.6	18.6	18.6	18.6	18.6	27.9	27.9
Total Petroleum Hydrocarbong	g	g	g	g	g	g	g	g	g	g
ributyl phosphate (Rat - LD ₅₀)	12.3	12.3	12.3	12.3	12.3	12.3	12.3	12.3	18.5	18.5
Trichloroethylene (Rat - NOAEL)	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	13	13

Table G-1. (continued).

Chemical	TRV for M121	TRV for M122	TRV for M122A	TRV for M123	TRV for M210	TRV for M210A	TRV for M222	TRV for M322	TRV for M422	TRV for M422A
Trimethylopropane-triester (Rat - LD_{50})	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.06	0.06
Uranium (Mouse - NOAEL)	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.768	0.768
Vanadium (Mouse - NOAEL)	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.68	0.68
Xylene (Mouse - NOAEL)	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.129	0.129
Zinc (Rat - NOAEL)	14	14	14	14	14	14	14	14	21	21
Zirconium (Rat - NOAEL)	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	298.1	298.1

a. Exposure route: inhalation.

b. Exposure route: dermal.

c. Exposure route: intraperitoneal injection.

d. Exposure route: intravenous injection.

e. The PCB, Aroclor-1254, is evaluated separately from the PCB, Aroclor-1260.

f. . Values for benzo(a)pyrene were used.

g. Values for benzene were used.

h. Values for 2,3,7,8 -Tetrachlorodibenzodioxín were used.

No data were located for:

4-nitrophenol benzoic acid phenanthrene trans-1,3-dichloropropene benzo(g,h,i)perylene pentachlorophenol sulfide

Table G-2. Summary of selected toxicity reference values (TRVs in mg/kg-day) for avian functional groups.

Chemical	TRV for AV121	TRV for AV122	TRV for AV132	TRV for AV142	TRV for AV143	TRV for AV210	TRV for AV210A	TRV for AV221	TRV for AV222	TRV for AV222A	TRV for AV232
2,3,7,8,- Tetrachloro dibenzodioxin ^c (Pheasant - NOAEL)	c	с	c	С	c	c	c	c	c	c	c
Aluminum (Chicken -NOAEL)	75	75	75	75	75	75	75	75	75	75	75
Aluminum hydroxide (Chicken - NOAEL)	292	292	292	292	292	292	292	292	292	292	292
Aluminum sulfate (Turkey - NOAEL)	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
Arsenic (Mallard - NOAEL)	0.64	0.64	0.64	1.29	1.29	0.43	0.43	0.43	0.43	0.43	0.43
Bis(tri-n- butyltin)oxide (Japanese Quail – NOAEL	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Boron (Mallard - NOAEL)	150	150	150	300	300	100	100	100	100	100	100
Cadmium (Black Duck - LOAEL)	0.04	0.04	0.04	0.07	0.07	0.02	0.02	0.02	0.02	0.02	0.02
Chromium-III (Chicken - NOAEL)	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Cobalt (Chicken - LOAEL)	0.213	0.213	0.213	0.213	0.213	0.213	0.213	0.213	0.213	0.213	0.213
Copper (Chicken - NOAEL)	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61
Cyanide (European Starling - LD ₅₀)	0.04	0.04	0.04	0.04	0.04	0.06	0.06	0.06	0.06	0.06	0.06
Fluoride (Screech Owl - NOAEL)	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Lead (European Starling - LOAEL)	0.03	0.03	0.03	0.03	0.03	0.04	0.08	0.04	0.04	0.04	0.04
Manganese (Chicken – NOAEL)	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0
Mercury (Inorganic)	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16

Table G-2. (continued).

Chemical	TRV for AV121	TRV for AV122	TRV for AV132	TRV for AV142	TRV for AV143	TRV for AV210	TRV for AV210A	TRV for AV221	TRV for AV222	TRV for AV222A	TRV for AV232
(Japanese quail – NOAEL)											
Mercury (Organic) (Mallard - LOAEL)	0.012	0.012	0.012	0.024	0.024	0.008	0.008	0.008	0.008	0.008	0.008
Nickel (Chicken – NOAEL)	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Nitrate (Turkey - FEL)	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9	8.9
PCBs (1254) (Pheasant - LOAEL)	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Selenium (Mallard - NOAEL)	0.13	0.13	0.13	0.25	0.25	0.083	0.083	0.083	0.083	0.083	0.083
Sodium nitrate (Juvenile turkeys – LOAEL)	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
Sulfate (Turkey - NOAEL)	8.64	8.64	8.64	8.64	8.64	8.64	8.64	8.64	8.64	8.64	8.64
Thallium (Quail - FEL)	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Uranium (Black Duck - NOAEL)	20	20	20	40	40	13	13	13	13	13	13
Vanadium (Mallard – NOAEL)	0.13	0.13	0.13	0.25	0.25	0.08	0.08	0.08	80.0	0.08	0.08
Zinc (Chicken - LOAEL)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

4-Chloroaniline

COPC:

4-Chloroaniline CAS 106-47-8

Test Organisms:

Rat and Mouse (Omnivore, Order-Rodentia)

Exposure Medium:

Oral

Test Endpoint:

LOAEL—Spleen lesions; increased mortality

Reference:

National Cancer Institute (NCI), 1979, Bioassay of p-Chloroaniline for

Possible Carcinogenicity, NCI Carcinogenesis Technical Report Series

No. 189, NTIS, PB-295896.

QCE:

12.5 mg/kg/day—Adjusted for treatment schedule

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	2	2	2	No juveniles tested but adult males and females tested
Q_1	1	1	1	Ecologically relevant endpoint
Q_2	1	1	1	Chronic (78-week) exposure
Q_3	2	2	2	LOAEL
U	2	2	2	Adequate number of animals from two species tested. Multiple endpoints (cancer and non-cancer) tested. Supporting studies on possible reproductive or developmental effects are lacking. A NOAEL was not established.
Total AF	8	16	24	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	12.5	12.5	12.5	QCE = quantified critical endpoint
TRV	1.56	0.78	0.52	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	1.56	Test organism is in the same order and trophic level as the functional group members	none
2	0.78	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3 .	0.52	Test organism is in a different order and trophic level from the functional group members	M122, M122A, M121, M123, M132 M210, M210A, M222, M322

Acetone

COPC:

Acetone CAS 67-64-1

Test Organisms:

Rat and Mouse (Omnivore, Order-Rodentia)

Exposure Medium:

Oral (gavage)

Test Endpoint:

NOAEL

Reference:

EPA, 1986, Ninety-Day Gavage Study in Albino Rats Using Acetone, Office of

Solid Waste, Washington, DC.

QCE:

100 mg/kg-day

Adjustment Factors (AF)				Justification for adjustment factor	
R	1	2	3	R = 1 is AF for same order and trophic level	
				R = 2 is AF for different order and same trophic level	
				R = 3 is AF for different order and trophic level	
I	2	2	2	30 each sex/treatment group evaluated. No juveniles tested.	
Q_1	1	1	1	Ecologically relevant endpoint	
Q_2	1	1	1	Chronic (90-day) study	
Q_3	1	1	1	NOAEL	
U	2	2	2	Numerous endpoints measured. Adequate number of animals tested. Supporting chronic toxicity and reproductive studies are lacking.	
Total AF	4	8	12	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$	
QCE (mg/kg-day)	100	100	100	QCE = quantified critical endpoint	
TRV	25	13	8.3	Toxicity Reference Value = QCE/Total AF	

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	25	Test organism is in the same order and trophic level as the functional group members	none
2	13	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	8.3	Test organism is in a different order and trophic level from the functional group members	M122, M122A, M121, M123, M132 M210, M210A, M222, M322

Antimony (Antimony Potassium Tartrate)

COPC:

Antimony (Antimony Potassium Tartrate) CAS 7440-36-0

Test Organisms:

Mouse (Omnivore, Order-Rodentia)

Exposure Medium:

Water

Test Endpoint:

NOAEL—Apparent slight decrease in life span of female CD-1 mice

(significance unknown)

Reference:

Schroeder, H.A., M. Mitchner, and J.J. Balassa, 1968, Zirconium, Niobium, Antimony and Fluorine in Mice: Effects of Growth Survival and Tissue Levels,

Journal of Nutrition, 95:95-101.

Kanisawa, M. and H.A. Schroeder, 1969, "Life term studies on the effect of trace elements on spontaneous tumor in mice and rats." Cancer Research,

29(4):892-895.

QCE:

0.35 mg/kg-day--5mg/L*7.0mL/100g-day*L/1000mL*1000g/1kg

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	1	1	1	Chronic toxicity studies with adequate numbers of animals.
Q_1	0.5	0.5	0.5	Endpoint could occur, but of uncertain ecological significance
Q_2	1	1	1	Chronic study
Q_3	1	1	1	NOAEL endpoint
U	2	2	2	Large chronic study, but no reproductive endpoints examined.
M	0.5	0.5	0.5	Soluble salts in the drinking water were used
Total AF	0.5	1.0	1.5	$R * I * Q_1 * Q_2 * Q_3 * U * M = Total AF$
QCE (mg/kg-day)	0.35	0.35	0.35	QCE = quantified critical endpoint
TRV	0.70	0.35	0.23	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.70	Test organism is in the same order and trophic level as the functional group members	none
2	0.35	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	0.23	Test organism is in a different order and trophic level from the functional group members	M122, M122A, M121, M123, M132 M210, M210A, M222, M322

Arsenic

COPC: Arsenic CAS 7440-38-2

Test Organisms: Brown-headed cowbird (Insectivore, Order-Passeriformes)

Exposure Medium: NA

Test Endpoint: Mortality

Reference: US Fish and Wildlife Service, 1969, Bureau of Sport Fisheries and Wildlife,

Publication 74, pp 56-57.

QCE: 2.46 mg/kg-day

Adjustment Factors				Total Control of the		
(AF)	 :			Justification for adjustment factor		
R	1	2	3	R = 1 is AF for same order and trophic level		
				R = 2 is AF for different order and same trophic level		
				R = 3 is AF for different order and trophic level		
I	2	2	2	Males only.		
Q_1	1	1	1	Mortality		
Q_2	1	1	1	Chronic (7 months)		
Q_3	3	3	3	Mortality		
U	3	3	3	Four dose levels- both a LOAEL and NOAEL established		
Total AF	18	36	54	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$		
QCE (mg/kg-day)	2.46	2.46	2.46	QCE = quantified critical endpoint		
TRV	0.137	0.069	0.046	Toxicity Reference Value = QCE/Total AF		

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.137	Test organism is in the same order and trophic level as the functional group members	none
2	0.069	Test organism is in a different order and same trophic level from the functional group members	AV210, AV210A, AV221, AV222, AV222A, AV232, AV233, AV241,AV242
3	0.046	Test organism is in a different order and trophic level from the functional group members	AV121AV122, AV132, AV142, AV143, AV310, AV322, AV333, AV342, AV422, AV432, AV433, AV442

Arsenic CAS 7440-38-2

Test Organisms:

Mallard (Herbivore, Order-Anseriformes)

Exposure Medium:

NA

Test Endpoint:

 LD_{50}

Reference:

National Academy of Sciences (NAS), 1977, Arsenic, Washington DC.

QCE:

39 mg/kg-day

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	3	3	3	Secondary source with little supporting variation data.
Q_1	1	1	1	Relevant effect (mortality).
Q_2	3	3	3	Study duration was acute
Q_3	3	3	3	LD_{50}
U	3	3	3	Old study, secondary source (supporting info only)
Total AF	8 1	162	243	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	39	39	39	QCE = quantified critical endpoint
TRV	0.48	0.24	0.16	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.48	Test organism is in the same order and trophic level as the functional group members	AV142, AV143
2	0.24	Test organism is in a different order and same trophic level from the functional group members	AV121, AV122, AV132
3	0.16	Test organism is in a different order and trophic level from the functional group members	AV210, AV210A, AV221, AV222, AV222A, AV232, AV233, AV241, AV242, AV310, AV322, AV333, AV342, AV422, AV432, AV433, AV442

Arsenic CAS 7740-38-2

Test Organisms:

Domestic sheep (Herbivore, Order-Artiodactyla)

Exposure Medium:

Diet

Test Endpoint:

NOAEL

Reference:

Eisler, R. 1988, Arsenic Hazards to Fish, Wildlife, and Invertebrates: A

Synoptic Review, US Fish and Wildlife Service Biological Report,

85(1.12):92pp.

QCE:

2.3 mg/kg-day

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	3	3	3	Secondary source with no data regarding variability of response.
\mathbf{Q}_1	1	1	1	Relevant effect.
Q_2	2	2	2	Subacute duration.
Q_3	1	1	1	NOEL endpoint.
U	3	3	3	Secondary source, only one dose level.
Total AF	18	36	54	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	2.3	2.3	2.3	QCE = quantified critical endpoint
TRV	0.13	0.06	0.04	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.13	Test organism is in the same order and trophic level as the functional group members	none
2	0.06	Test organism is in a different order and same trophic level from the functional group members	M121, M122, M122A, M123, M132
3	0.04	Test organism is in a different order and trophic level from the functional group members	M210, M210A, M222, M322, M422, M422A

Arsenic CAS 7778-43-0

Test Organisms:

Mallard (Herbivore, Order-Anseriformes)

Exposure Medium:

Oral in diet (Arensic as sodium arsenite)

Test Endpoint:

NOAEL

Reference:

U.S. Fish and Wildlife Service. 1964. Pesticide-wildlife studies, 1963: a review of Fish and Wildlife Service investigations during the calendar year.

FWS Circular 199.

QCE:

5.14 mg/kg-day—((51.35mg As/kg food)*(0.1 kg food/day))/(1kg BW)

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	Same trophic level but different order than members of functional groups
I	2	2	2	
Q_1	1	1	1	Mortality, is ecologically relevant
Q_2	1	1	1	Chronic duration (over 128 days)
Q_3	1	1	1	NOAEL
U	2	2	2	Multiple doses (100, 250, 500, and 1000 ppm sodium arsenite) examined with both a NOAEL and a LOAEL established. However, no reproductive endpoints examined.
Total AF	4	8	12	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	5.14	5.14	5.14	QCE = quantified critical endpoint
TRV	1.29	0.64	0.43	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
I	1.29	Test organism is in the same order and trophic level as the functional group members	AV142, AV143
2	0.64	Test organism is in a different order and same trophic level from the functional group members	AV121, AV122, AV132
3	0.43	Test organism is in a different order and trophic level from the functional group members	AV210, AV210A, AV221, AV222, AV222A, AV232, AV233, AV241, AV242, AV310, AV322, AV333, AV342, AV422, AV432, AV433, AV442

Arsenic CAS 7778-43-0

Test Organisms:

Dog (Omnivore, Order-Carnivora)

Exposure Medium:

Diet as sodium arsenite or sodium arsenate

Test Endpoint:

NOAEL

Reference:

Byron, W.R., et al., 1967, "Pathologic changes in rats and dogs from two-year

feeding of sodium arsenite or sodium arsenate," Toxicology and Applied

Pharmacology, 10:132-147.

QCE:

1.28 mg/kg-day— (50 mg/kg food)*(0.24 kg food/day)/(9.41 kg BW)

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	2	2	2	Reasonable number of males and females studied (24)
Q_1	1	1	1	Weight loss, survival, endpoint ecologically significant
Q_2	1	I	1	Chronic study (2 years)
Q_3	1	1	1	NOAEL
U	2	2	2	Reasonable study, but no reproductive endpoints examined in the two years.
Total AF	4	8	12	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	1.28	1.28	1.28	QCE = quantified critical endpoint
TRV	0.32	0.16	0.11	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.32	Test organism is in the same order and trophic level as the functional group members	M422A
2	0.16	Test organism is in a different order and same trophic level from the functional group members	M422
3	0.11	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M123, M210, M210A, M222, M322

^{*}Ingestion rate specified

Arsenic CAS 7778-43-0

Test Organisms:

Rat (Omnivore, Order-Rodentia)

Exposure Medium:

Diet as sodium arsenate or sodium arsenite

Test Endpoint:

NOAEL

Reference:

Byron, W.R., et al., 1967, "Pathologic changes in rats and dogs from two-year

feeding of sodium arsenite or sodium arsenate," Toxicology and Applied

Pharmacology, 10:132-147.

QCE:

3.1mg/kg-day—(62.5 mg/kg food)*(0.0189kg/day)/(0.382 kg BW)

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	Different trophic level and order than members of functional groups.
I	2	2	2	300 weanling Data do not show a good dose-response curve low-dose range.
Q_1	1	1	1	Levels of 62.5 ppm Arsenic as arsenite and 125 ppm Arsenic as arsenate did not cause common bile duct enlargement and did not affect survival. Weight was slightly reduced in females at the 62.5 ppm Arsenic as arsenite.
Q_2	1	1	1	Chronic study.
Q_3	1	1	1	NOAEL using lowest NOAEL from either arsenite or arsenate
U	2	2	2	Good overall design, but no reproductive studies in the two years.
Total AF	4	8	12	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	3.1	3.1	3.1	QCE = quantified critical endpoint
TRV	0.78	0.39	0.26	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.78	Test organism is in the same order and trophic level as the functional group members	none
2	0.39	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	0.27	Test organism is in a different order and trophic level from the functional group members	M122, M122A, M121, M123, M132 M210, M210A, M222, M322

Arsenic CAS 7778-43-0

Test Organisms:

Mice (Omnivore, Order-Rodentia)

Exposure Medium:

Diet as sodium arsenate or sodium arsenite

Test Endpoint:

LOAEL

Reference:

Schroeder, H.A., and M. Mitchner, 1971. Toxic effects of trace elements on

the reproduction of mice and rats. Arch. Environ. Health. 23:102-106.

QCE:

1.25 mg/kg-day— $((5.00 \text{ mg As/L H}_2\text{O})*(0.0075 \text{ L/day}))/(0.003 \text{kg BW})$

Adjustment Factors (AF)				Justification for adjustment factor	
R	1	2	3	Different trophic level and order than members of functional groups.	
I	2	2	2	3 generations, however only one dosage	
Q_1	1	1	1	Declining litter sized with each successive generation	
Q_2	1	l	1	Chronic study.	
Q_3	2	2	2	LOAEL	
U	2	2	2	Only one dose level, no NOAEL established.	
Total AF	8	16	24	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$	
QCE (mg/kg-day)	1.25	1.25	1.25	QCE = quantified critical endpoint	
TRV	0.16	0.08	0.052	Toxicity Reference Value = QCE/Total AF	

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.16	Test organism is in the same order and trophic level as the functional group members	none
2	0.08	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	0.052	Test organism is in a different order and trophic level from the functional group members	M122, M122A, M121, M123, M132 M210, M210A, M222, M322

Benzo(a)pyrene

COPC:

Benzo(a)pyrene CAS 50-32-8

Test Organisms:

Mouse (Omnivore, Order-Rodentia)

Exposure Medium:

Oral (gavage)

Test Endpoint:

FEL

Reference:

Klein, M., 1963. "Susceptibility of Strain B6AF/j Hybrid Infant Mice to

Tumorigenesis with 1,2-Benxanthracene, deoxycyclic acid, and 3-

methylcholanthrene", Cancer Research, 23:1701-1707.

QCE:

500 mg/kg-day

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	2	2	2	Infant males tested.
Q_1	0.1	0.1	0.1	Cancer endpoint
Q_2	1	1	1	Chronic (547-day) study
Q_3	3	3	3	FEL.
U	3	3	3	Statistical evaluation of data not reported. Number of animals tested not reported.
Total AF	1.8	3.6	5.4	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	500	500	500	QCE = quantified critical endpoint
TRV	278	139	92.6	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	278	Test organism is in the same order and trophic level as the functional group members	none
2	139	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	92.6	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M132, M210, M210A, M222, M322

Beryllium

COPC:

Beryllium (Beryllium sulfate) CAS 7440-41-7

Test Organisms:

Rat (Omnivore, Order-Rodentia)

Exposure Medium:

Water

Test Endpoint:

NOAEL

Reference:

Schroeder, H.A., and M. Mitchner, 1975, Life-Term Studies in Rats: Effects of

Aluminum, Barium, Beryllium and Tungsten, J. Nutr. 105: 421-427.

QCE:

0.66mg/kg-day--(5mg/L water)*(0.046L/day)/0.35 kg BW

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	1	1	1	Chronic toxicity studies with adequate numbers of animals
Q_1	1	l	1	Ecologically relevant endpoint (life-span, growth).
Q_2	1	1	1	Chronic study
Q_3	1	1	1	NOAEL endpoint
U	2	2	2	Large chronic study, but no reproductive endpoints examined
M	0.5	0.5	0.5	Soluble salt in the drinking water used
Total AF	1	2	3	$R * I * Q_1 * Q_2 * Q_3 * U * M = Total AF$
QCE (mg/kg-day)	0.66	0.66	0.66	QCE = quantified critical endpoint
TRV	0.66	0.33	0.22	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.66	Test organism is in the same order and trophic level as the functional group members	None
2	0.33	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	0.22	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M132, M210, M210A, M222, M322

^{*}Ingestion rate specified by EPA (EPA, 1985a).

Cadmium

COPC:

Cadmium CAS 7440-43-9

Test Organisms:

Chicken (Omnivore, Order-Galliformes)

Exposure Medium:

Diet

Test Endpoint:

LOAEL—Body weight gain, mortality

Reference:

Pritzel, M.C., Y.H. Lie, E.W. Kienholz, and C.E. Whiteman, 1974, The Effect

of Dietary Cadmium on the Development of Young Chickens, Poultry Sci.

53:2026-2029.

QCE:

29 mg/kg-day (400 mg/kg)*(0.11 kg/day)/0.151 kg bw

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	2	2	2	Adequate numbers of males tested, 100
Q_1	1	1	1	Endpoint ecologically relevant (growth, mortality).
Q_2	2	2	2	Subchronic study
Q_3	3	3	3	LOAEL endpoint, but mortality observed
U	3	3	3	No reproductive endpoints examined, however, sensitive life stage examined. High doses tested. Presence of zinc in diet may have influenced (decreased) cadmium toxicity. NOAEL not identified.
Total AF	36	72	108	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	29	29	29	QCE = quantified critical endpoint
TRV	0.81	0.40	0.27	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.81	Test organism is in the same order and trophic level as the functional group members	none
2	0.40	Test organism is in a different order and same trophic level from the functional group members	AV422, AV432, AV433,AV442
3	0.27	Test organism is in a different order and trophic level from the functional group members	AV121, AV122, AV132, AV142, AV143, AV210, AV210A, AV221, AV222, AV222A, AV232, AV233, AV241, AV242, AV310, AV322, AV333, AV342

^{*}Ingestion rate specified

^{**}BW estimated through the Rosomer article, 1961.

Cadmium CAS 7440-43-9

Test Organisms:

Black Duck (Herbivore, Order-Anseriformes)

Exposure Medium:

Diet

Test Endpoint:

LOAEL

Reference:

Heinz, G.H. and Haseltine, S.D., 1983, "Altered Avoidance Behavior of Young

Black Ducks Fed Cadmium". Environ. Toxicol. Chem. 2:419-421. As cited in

Eisler, 1985.

QCE:

0.14 mg/kg-day—(4 mg/kg)*(0.06 kg/day)/1.7 kg BW

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	1	1	1	Adequate numbers tested, males, females and juveniles given the doses.
\mathbf{Q}_1	1	1	1	Ecologically relevant endpoint (behavior).
Q_2	1	1	1	Chronic (90-day) exposure
Q_3	2	2	2	LOAEL endpoint
U	2	2	2	Reproductive endpoints and sensitive life stage examined, but only data given was on the flight response of the juveniles.
M	0.5	0.5	0.5	Cadmium chloride in the feed
Total AF	2	4	6	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	0.14	0.14	0.14	QCE = quantified critical endpoint
TRV	0.07	0.04	0.2	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.07	Test organism is in the same order and trophic level as the functional group members	AV142, AV143
2	0.04	Test organism is in a different order and same trophic level from the functional group members	AV121, AV122, AV132
3	0.02	Test organism is in a different order and trophic level from the functional group members	AV210, AV210A, AV221, AV222, AV222A, AV232, AV233, AV242, AV310, AV322, AV333, AV342, AV422, AV432, AV433, AV442

Cadmium CAS 7440-43-9

Test Organisms:

Rat (Omnivore, Order-Rodentia)

Exposure Medium:

Diet

Test Endpoint:

LOAEL

Reference:

Wills, J.H., Groblewski, G.E., Coulston, F., 1981, Chronic and

Multigeneration Toxicities of Small Concentrations of Cadmium in the Diet of

Rats, Ecotoxicol. Environ. Safety. 5:452-464.

ATSDR, Agency for Toxic Substance Disease Registry, 1989, Toxicological

Profile for Cadmium, March, 1989.

QCE:

5.5 E-3 mg/kg-day-Specified

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	1	1	1	Adequate numbers of males females and juveniles tested.
Q_1	1	1	1	Ecologically relevant endpoint (growth, mortality).
Q_2	1	1	1	Chronic study
Q_3	2	2	2	LOAEL
U	1	1	1	Excellent design, four-generational study.
Total AF	2	4	6	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	5.5E-3	5.5E-3	5.5E-3	QCE = quantified critical endpoint
TRV	3E-3	1E-3	8E-4	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	3E-3	Test organism is in the same order and trophic level as the functional group members	none
2	1E-3	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	8E-4	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M132, M210, M210A, M222, M322

Chromium(III)

COPC:

Chromium(III) CAS 7440-47-3

Test Organisms:

Rat (Omnivore, Order-Rodentia)

Exposure Medium:

Diet

Test Endpoint:

NOAEL

Reference:

Ivankovic and Preussmann, 1975, Absence of Toxic and Carcinogenic Effects After Administration of High Doses of Chromic Oxide Pigment in Subacute and Long-Term Feeding Experiments in Rats, Food Cosmet, Toxicol., 13(3):

347-351.

QCE:

1500 mg/kg-day—1800 g/kg total dose consumed at highest dose rate,

administered 5 days/week for 120 weeks (~840 days total), corrected for % Cr.

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	1	1	1	Chronic toxicity study with adequate numbers of animals
Q_1	1	1	1	No endpoint affected (treatments had no effect on life expectancy, food consumption, growth rate, or cancer incidence).
Q_2	1	1	1	Chronic study
Q_3	1	1	1	NOAEL endpoint
U	2	2	2	Large chronic study
Total AF	2	4	6	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	1500	1500	1500	QCE = quantified critical endpoint
TRV	750	375	250	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	750	Test organism is in the same order and trophic level as the functional group members	none
2	375	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	250	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M132, M210, M210A, M222, M322

Chromium(III) CAS 7440-47-3

Test Organisms:

Chicken (Omnivore, Order-Galliformes)

Exposure Medium:

Diet

Test Endpoint:

NOAEL

Reference:

Romoser, G.L., W.A. Dudley, L.J. Machlin, and L. Loveless, 1961, Toxicity of

Vanadium and Chromium for the Growing Chick, Poultry Science, 40:1171-

1173.

QCE:

49 mg/kg-day

Adjustment Factors				
(AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
1	2	2	2	Primary source available
Q_1	1	1	1	Ecologically relevant endpoint (growth, mortality).
Q_2	2	2	2	Subchronic exposure duration
Q_3	1	1	1	NOAEL endpoint
U	3	3	3	Old study, limited endpoints
Total AF	12	24	36	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	49	49	49	QCE = quantified critical endpoint
TRV	4.1	2.0	1.4	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	4.1	Test organism is in the same order and trophic level as the functional group members	none
2	2.0	Test organism is in a different order and same trophic level from the functional group members	AV422, AV432, AV433,AV442
3	1.4	Test organism is in a different order and trophic level from the functional group members	AV121, AV122, AV132, AV142, AV143, AV210, AV210A, AV221, AV222, AV222A, AV232, AV233, AV241, AV242, AV310, AV322, AV333, AV342

Chromium(VI)

COPC: Chromium(VI) CAS 7440-47-3

Test Organisms: Dog (Omnivore, Order-Carnivora)

Exposure Medium: Water **Test Endpoint:** NOAEL

Reference: Steven et al. (1976) cited in Eisler (1986)

Anwar, R.A., et al., 1961, "Chronic Toxicity Studies. Part III. Chronic Toxicity of Cadmium and Chromium in Dogs", Archives of Environmental

Health, 3:456-460.

Steven, J.D. et al., 1976, Effects of Chromium in the Canadian Environment,

RCC No. 15017, National Resources Council, Ottawa, Canada.

QCE: 0.30 mg/kg-day--11.2 mg/L*(3.1mL**/100g-day)*8730g*1L/1000mL/8.73

Kg BW

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	2	2	2	Smaller number of female dogs only. No males tested.
Q_1	1	1	1	No endpoint observed
Q_2	1	1	1	Chronic duration (4 years)
Q_3	1	1	1	NOAEL
U	2	2	2	No reproductive endpoint studied, but good duration of testing.
M	0.5	0.5	0.5	Soluble salt placed in the drinking water.
Total AF	2	4	6	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	0.30	0.30	0.30	QCE = quantified critical endpoint
TRV	0.15	0.08	0.05	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.15	Test organism is in the same order and trophic level as the functional group members	M422A
2	0.08	Test organism is in a different order and same trophic level from the functional group members	M422
3	0.05	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M123, M210, M210A, M222, M322

^{**}Water consumption information is from the Dames and Moore animal data chart.

Chromium(VI) CAS 7440-47-3

Test Organisms:

Mouse (Omnivore, Order-Rodentia)

Exposure Medium:

Water

Test Endpoint:

FEL

Reference:

Trivedi, B., et al., 1989, "Embroyotoxicity and fetotoxicity of orally

administered hexavalent chromium in mice,' Reproductive Toxicology,

3(4);275-278.

QCE:

59 mg/kg-day—Specified from 1.76 mg/mouse-day and a BW of .030 kg

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	1	1	1	Adequate numbers, variability assessed appropriately and not high.
Q_1	1	1	1	Ecologically relevant endpoint
Q_2	2	2	2	Subchronic exposure duration
Q_3	3	3	3	FEL endpoint - fetal development harmed
U	2	2	2	Well designed study, appropriate endpoints well characterized, but no NOAEL identified.
M	0.5	0.5	0.5	Soluble salt placed in the drinking water
Total AF	6	12	18	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	59	59	59	QCE = quantified critical endpoint
TRV	9.8	4.9	3.3	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	9.8	Test organism is in the same order and trophic level as the functional group members	none
2	4.9	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	3.3	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M132, M210, M210A, M222, M322

Cobalt (cobalt chloride)

COPC: Cobalt (cobalt chloride) CAS 7440-48-4

Test Organisms: Chicken (Omnivore, Order-Galliformes)

Exposure Medium: Diet

Test Endpoint: LOAEL Increased mortality associated with S. gallinarium infection

Reference: Hill, C.H., 1979, "The effect of dietary protein levels on mineral toxicity in

chicks," Journal of Nutrition, 109:501-507.

QCE: 10.2 mg/kg-day-100 ppm in diet converted to dose using an ingestion rate* of

0.02 kg/day and estimated body weight of 0.2kg from study.

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	2	2	2	Adequate numbers of animals, but variability not addressed.
Q_1	1	1	1	Endpoint ecologically relevant
Q_2	2	2	2	Subchronic duration
Q_3	2	2	2	LOAEL
U	2	2	2	No reproductive endpoints examined, but sensitive life stage evaluated
Total AF	16	32	48	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	10.2	10.2	10.2	QCE = quantified critical endpoint
TRV	0.638	0.319	0.213	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.638	Test organism is in the same order and trophic level as the functional group members	none
2	0.319	Test organism is in a different order and same trophic level from the functional group members	AV422, AV432, AV433,AV442
3	0.213	Test organism is in a different order and trophic level from the functional group members	AV121, AV122, AV132, AV142, AV143, AV210, AV210A, AV221, AV222, AV222A, AV232, AV233, AV241, AV242, AV310, AV322, AV333, AV342

^{*} Estimated as 0.0582 Wt^{0.651} (kg) as cited in EPA, 1993. Wildlife Exposure Factors Handbook.

Cobalt

COPC:

Cobalt CAS 7440-48-4

Test Organisms:

Dog (Omnivore, Order-Carnivora)

Exposure Medium:

Diet

Test Endpoint:

NOAEL

Reference:

Brewer, B., 1940, "A statistical study of cobalt polycythemia in the dog," Am.

J. Physiol. 128:345-348.

Agency for Toxic Substance Disease Registry (ATSDR), 1990, Draft:

Toxicological Profile for Cobalt, October.

QCE:

5.0 mg/kg-day-Specified

Adjustment Factors (AF)				Justification for adjustment factor
R	1	2	3	R = 1 is AF for same order and trophic level
				R = 2 is AF for different order and same trophic level
				R = 3 is AF for different order and trophic level
I	2	2	2	Only females tested, 7 total dogs.
\mathbf{Q}_1	0.1	0.1	0.1	Endpoint of unknown ecological significance
Q_2	2	2	2	Subchronic duration (4 weeks)
Q_3	1	1	1	NOAEL
U	3	3	3	Older study, reasonable design, no reproductive endpoints or sensitive life stage examined.
Total AF	1.2	2.4	3.6	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$
QCE (mg/kg-day)	5	5	5	QCE = quantified critical endpoint
TRV	4.2	2.1	1.4	Toxicity Reference Value = QCE/Total AF

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	4.2	Test organism is in the same order and trophic level as the functional group members	M422A
2	2.1	Test organism is in a different order and same trophic level from the functional group members	M422
3	1.4	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M123, M210, M210A, M222, M322

Cobalt CAS 7440-48-4

Test Organisms:

Rat (Omnivore, Order-Rodentia)

Exposure Medium:

Diet

Test Endpoint:

NOAEL

Reference:

Nation, J.R., Bourgeois, A.E., Clark, D.E. et al., 1983, "The effects of chronic

cobalt exposure on behavior and metallothionein levels in the adult rat,"

Neurobehav, Toxicol. and Teratology, 5:9-15.

Agency for Toxic Substance Disease Registry (ATSDR), 1990, Draft:

Toxicological Profile for Cobalt, October.

QCE:

5 mg/kg-day Specified

Adjustment Factors (AF)		Justification for adjustment factor			
R	1	2	3	R = 1 is AF for same order and trophic level	
				R = 2 is AF for different order and same trophic level	
				R = 3 is AF for different order and trophic level	
I	3	3	3	Small number of male rats tested (18)	
Q_1	1	1	1	Endpoint of relevant ecological significance	
Q_2	2	2	2	Subchronic duration	
Q_3	1	1	1	NOAEL endpoint	
U	2	2	2	Reasonable study, but sensitive life stage not examined	
Total AF	12	24	36	$R * I * Q_1 * Q_2 * Q_3 * U = Total AF$	
QCE (mg/kg-day)	5	5	5	QCE = quantified critical endpoint	
TRV _	0.42	0.21	0.14	Toxicity Reference Value = QCE/Total AF	

R Value	TRV (mg/kg-day)	Justification	Appropriate Functional Group
1	0.42	Test organism is in the same order and trophic level as the functional group members	none
2	0.21	Test organism is in a different order and same trophic level from the functional group members	M422, M422A
3	0.14	Test organism is in a different order and trophic level from the functional group members	M121, M122, M122A, M132, M210, M210A, M222, M322